Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.052
Filtrar
1.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38286626

RESUMO

It is widely accepted that fear memories are consolidated through protein synthesis-dependent changes in the basolateral amygdala complex (BLA). However, recent studies show that protein synthesis is not required to consolidate the memory of a new dangerous experience when it is similar to a prior experience. Here, we examined whether the protein synthesis requirement for consolidating the new experience varies with its spatial and temporal distance from the prior experience. Female and male rats were conditioned to fear a stimulus (S1, e.g., light) paired with shock in stage 1 and a second stimulus (S2, e.g., tone) that preceded additional S1-shock pairings (S2-S1-shock) in stage 2. The latter stage was followed by a BLA infusion of a protein synthesis inhibitor, cycloheximide, or vehicle. Subsequent testing with S2 revealed that protein synthesis in the BLA was not required to consolidate fear to S2 when the training stages occurred 48 h apart in the same context; was required when they were separated by 14 d or occurred in different contexts; but was again not required if S1 was re-presented after the delay or in the different context. Similarly, protein synthesis in the BLA was not required to reconsolidate fear to S2 when the training stages occurred 48 h apart but was required when they occurred 14 d apart. Thus, the protein synthesis requirement for consolidating/reconsolidating fear memories in the BLA is determined by similarity between present and past experiences, the time and place in which they occur, and reminders of the past experiences.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Consolidação da Memória , Ratos , Masculino , Feminino , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Consolidação da Memória/fisiologia , Inibidores da Síntese de Proteínas/farmacologia , Cicloeximida/farmacologia , Medo/fisiologia
2.
Life Sci ; 340: 122454, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262574

RESUMO

AIMS: Although the functions of progesterone in the myometrium are well-established, the nongenomic effects of progesterone in pregnant myometrial contractions are still unclear. Therefore, this study aimed to investigate changes in the nongenomic effects of progesterone during pregnancy. MAIN METHODS: Myometrial strips were obtained from non-pregnant, pregnant, and postpartum rats, and the nongenomic effects of progesterone in the myometrium during pregnancy were examined. Additionally, the influence of actinomycin D and cycloheximide and the effects of Org OD-02-0 (a specific membrane progesterone receptor (mPR) agonist) in the myometrium were investigated. Moreover, DNA microarray and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to identify genes involved in progesterone-induced effects in the myometrium. KEY FINDINGS: Progesterone did not cause rhythmic contractions in non-pregnant myometrium but induced rhythmic contractions in pregnant myometrium, with the effects peaking at 20 d + 8 h of pregnancy. However, myometrial contractions decreased after delivery and were restored to non-pregnant levels at 7 d postpartum. Additionally, progesterone stably inhibited high KCl-induced myometrial contractions during pregnancy. Moreover, the nongenomic effects of progesterone were unaffected by actinomycin D or cycloheximide, and Org OD-02-0 effectively mimicked these effects. DNA microarray analysis and qRT-PCR revealed a significant increase in mPRß gene expression during pregnancy. However, mPRα, mPRγ, mPRδ, and mPRε expression levels remained unchanged. SIGNIFICANCE: The stimulatory nongenomic effect of progesterone, which was inducible and mPRß-dependent during pregnancy, may be involved in parturition. The inhibitory effect, which was constitutive and depended on other mPRs, may be involved in pregnancy maintenance.


Assuntos
Miométrio , Progesterona , Gravidez , Feminino , Ratos , Animais , Progesterona/farmacologia , Progesterona/metabolismo , Miométrio/metabolismo , Cicloeximida/farmacologia , Cicloeximida/metabolismo , Dactinomicina/farmacologia , Dactinomicina/metabolismo , Receptores de Progesterona/metabolismo , Progestinas/farmacologia , Contração Uterina
3.
J Integr Neurosci ; 23(1): 17, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38287862

RESUMO

BACKGROUND: Cycloheximide (CXM), an antifungal antibiotic, causes impaired memory consolidation as a side effect partially by disturbing the activities of the central catecholaminergic and cholinergic system. Some reports indicated that puerarin prevented memory impairment in various models in rodents. However, the protective effects of puerarin on the side effects of cycloheximide for memory consolidation impairment have not yet been investigated. METHODS: The protective effects of puerarin on CXM-induced memory-consolidation impairment, and memory impairment produced by central administration of AF64A neurotoxin, were investigated using a passive avoidance task in rats. A combination of transmitter receptor agonists and antagonists was used to explore the effects of puerarin on nervous system function. The activity of antioxidant defense systems and neurotransmitter systems in the prefrontal cortex and hippocampus were assayed. RESULTS: Systemic (25 and 50 mg/kg, i.p.) or central (5 and 10 µg/brain, i.c.v.) administration of puerarin attenuated CXM-induced memory-consolidation impairment produced by 1.5 mg/kg CXM (s.c.) in rats. The improvements produced by 50 mg/kg puerarin were blocked by cholinergic antagonists, a 5-HT2 receptor agonist, and an adrenergic receptor antagonist. Puerarin (only at 50 mg/kg, i.p.) reversed the CXM-induced alterations of the levels of norepinephrine in the prefrontal cortex and the levels of monoamines in the hippocampus. Puerarin also increased antioxidant-defense-system activities in the prefrontal cortex and hippocampus, which had been decreased by CXM. CONCLUSIONS: We suggested that the attenuating effects of puerarin on CXM-induced memory-consolidation impairment may be due to decrease oxidative damage and the normalition of the neurotransmitter function in the prefrontal cortex and hippocampus.


Assuntos
Isoflavonas , Consolidação da Memória , Ratos , Animais , Cicloeximida/efeitos adversos , Antioxidantes , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo , Neurotransmissores/efeitos adversos
4.
Learn Mem ; 31(1-2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38286522

RESUMO

We investigated whether retrograde amnesia for the stress-induced impairment of extinction retrieval shares similar characteristics with original acquisition memories. The first experiment demonstrated that cycloheximide administered shortly after a single restraint stress session alleviated the impairment of extinction retrieval but not when administered following a longer delay (i.e., the amnesia for stress is time-dependent). A second experiment showed that the retrograde amnesia for stress could be alleviated by a second brief exposure to the stressor. These results demonstrating that amnesia for stress shares characteristics similar to original memories are explained using a retrieval-based memory integration model of retrograde amnesia.


Assuntos
Amnésia Retrógrada , Transtornos da Memória , Humanos , Amnésia Retrógrada/induzido quimicamente , Amnésia , Cicloeximida/farmacologia
5.
Drug Deliv Transl Res ; 14(1): 116-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37402943

RESUMO

Human immunodeficiency virus (HIV) mainly attacks lymphocytes of the human immune system. The untreated infection leads to acquired immune deficiency syndrome (AIDS). Ritonavir (RTV) belongs to protease inhibitors (PIs), the crucial contributors of the combination therapy used in the treatment of HIV that is called highly active antiretroviral therapy (HAART). Formulations targeting the lymphatic system (LS) play a key role in delivering and maintaining therapeutic drug concentrations in HIV reservoirs. In our previous study, we developed RTV-loaded nanostructured lipid carriers (NLCs), which contain the natural antioxidant alpha-tocopherol (AT). In the current study, the cytotoxicity of the formulation was studied in HepG2, MEK293, and H9C2 cell lines. The formulation efficacy to reach the LS was evaluated through a cycloheximide-injected chylomicron flow blockade model in Wistar rats. Biodistribution and toxicity studies were conducted in rodents to understand drug distribution patterns in various organs and to establish the safety profile of the optimized formulation (RTV-NLCs). From the MTT assay, it was found that the cell viability of the formulation is comparable with the pure drug (RTV-API). More than 2.5-folds difference in AUC was observed in animals treated with RTV-NLCs with and without cycloheximide injection. Biodistribution studies revealed higher drug exposure in the lymphoidal organs with the RTV-NLCs. No significant increase in serum biomarkers for hepatotoxicity was observed in rats dosed with the RTV-NLCs. The current study reveals the lymphatic uptake of the RTV-NLCs and their safety in rodents. As the tissue distribution of RTV-NLCs is high, hence re-adjusting the RTV-NLCs dose to get the response equivalent to RTV-API may be more beneficial with respect to its safety and efficacy.


Assuntos
Infecções por HIV , Nanoestruturas , Ratos , Humanos , Animais , Ritonavir/uso terapêutico , Distribuição Tecidual , Ratos Wistar , Redução da Medicação , Cicloeximida/uso terapêutico , Lipídeos , Infecções por HIV/tratamento farmacológico , Portadores de Fármacos , Tamanho da Partícula
6.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958778

RESUMO

Oocyte activation via dual inhibition of protein synthesis and phosphorylation has improved in vitro embryo production in different mammalian species. In this study, we evaluated the effects of the combination of cycloheximide (CHX), dimethyl amino purine (DMAP), and anisomycin (ANY) on the activation of bovine oocytes, particularly on dynamics of MPF and MAPKs, embryonic developmental potential, and quality. The results showed that the cleavage and blastocyst rates, as well as levels of CCNB1, CDK1, p-CDK1Thr161, and p-CDK1Thr14-Tyr15, were similar among groups; ANY and ANY + CHX reduced the expression of ERK1/2 compared to DMAP-combinations (p < 0.05), whereas ANY + DMAP, CHX + DMAP, and ANY + CHX + DMAP reduced p-ERK1/2 compared to ANY and ANY + CHX treatments (p < 0.05). The quality of blastocysts in terms of cell counts, their allocation, and the numbers of TUNEL-positive cells did not differ among groups. However, transcript levels of POU5F1 were higher in embryos derived from ANY + CHX + DMAP treatment compared to other groups, while expression levels of CDX2 did not show differences. In addition, the BCL2A1/BAX ratio of the ANY + CHX + DMAP treatment was significantly low compared to the ANY treatment (p < 0.05) and did not differ significantly from the other treatments. In conclusion, oocyte activation by dual inhibition of protein synthesis and phosphorylation induces MPF inactivation without degradation of CCNB1, while MAPK inactivation occurs differentially between these inhibitors. Thus, although the combined use of these inhibitors does not affect early developmental competence in vitro, it positively impacts the expression of transcripts associated with embryonic quality.


Assuntos
Fator Promotor de Maturação , Partenogênese , Bovinos , Animais , Proteínas Quinases Ativadas por Mitógeno , Adenina/farmacologia , Oócitos , Cicloeximida/farmacologia , Blastocisto , Anisomicina/farmacologia , Mamíferos
7.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895141

RESUMO

Since glucose stimulates protein biosynthesis in beta cells concomitantly with the stimulation of insulin release, the possible interaction of both processes was explored. The protein biosynthesis was inhibited by 10 µM cycloheximide (CHX) 60 min prior to the stimulation of perifused, freshly isolated or 22 h-cultured NMRI mouse islets. CHX reduced the insulinotropic effect of 25 mM glucose or 500 µM tolbutamide in fresh but not in cultured islets. In cultured islets the second phase of glucose stimulation was even enhanced. In fresh and in cultured islets CHX strongly reduced the content of proinsulin, but not of insulin, and moderately diminished the [Ca2+]i increase during stimulation. The oxygen consumption rate (OCR) of fresh islets was about 50% higher than that of cultured islets at basal glucose and was significantly increased by glucose but not tolbutamide. In fresh, but not in cultured, islets CHX diminished the glucose-induced OCR increase and changes in the NAD(P)H- and FAD-autofluorescence. It is concluded that short-term CHX exposure interferes with the signal function of the mitochondria, which have different working conditions in fresh and in cultured islets. The interference may not be an off-target effect but may result from the inhibited cytosolic synthesis of mitochondrial proteins.


Assuntos
Ilhotas Pancreáticas , Camundongos , Feminino , Animais , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Cicloeximida/farmacologia , Insulina/metabolismo , Glucose/metabolismo , Tolbutamida/farmacologia , Tolbutamida/metabolismo , NAD/metabolismo , Mitocôndrias/metabolismo , Cálcio/metabolismo
8.
Eur J Pharm Biopharm ; 193: 89-95, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884159

RESUMO

Cycloheximide (CHX) has been used to reduce the flow of intestinal lymph and as a non-surgical tool to study drug absorption via the intestinal lymphatics. Pharmacokinetic information on the agent, and its relationship to effect and toxicity, have not been examined. The goal of this study was to provide pharmacokinetic data and link it to lymph-blocking and toxicological effects. Jugular-vein cannulated (JVC) adult Sprague-Dawley male rats were administered 0.5 mg/kg CHX by oral, intraperitoneal (ip), and intravenous routes followed by blood draws, and CHX was assayed using LC-MS/MS. Another four JVC rats were given peanut oil (2 mL/kg) without and then with CHX to measure effects on lipid absorption as a surrogate indicator of lymph flow. One-week later plasma biochemistry measures were obtained. The results indicated that CHX had a high clearance and volume of distribution, and oral absolute bioavailability of 0.47 with 0.5 mg/kg. CHX was associated with dose- and route-dependent pharmacokinetics. The relative bioavailability after ip doses was over 3. CHX had low plasma protein binding and minor urinary excretion. Metabolism appeared to be occur by oxidation and glucuronidation. Reductions in plasma lipids (24-40 %) were seen after 2.5 mg/kg orally with signs of inflammation and increased liver enzymes persisting for a week after the dose. CHX was associated with a reduction in lipid absorption after oral doses of 2.5 mg/kg, which seems to justify its use as a non-surgical tool to evaluate the lymphatic pathway of absorption of drugs. However, it also possesses hepatotoxicity, which should be taken into consideration in its use.


Assuntos
Lipídeos , Espectrometria de Massas em Tandem , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Cicloeximida , Cromatografia Líquida , Disponibilidade Biológica , Administração Oral , Absorção Intestinal
9.
Sci Rep ; 13(1): 13936, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626103

RESUMO

Adolescents are at increased risk to develop substance use disorders and suffer from relapse throughout life. Targeted weakening of drug-associated memories has been shown to reduce relapse-like behavior in adult rats, however this process has been understudied in adolescents. We aimed to examine whether adolescent-formed, cocaine-associated memories could be manipulated via reconsolidation mechanisms. To accomplish this objective, we used an abbreviated operant cocaine self-administration paradigm (ABRV Coc-SA). Adult and adolescent rats received jugular catheterization surgery followed by ABRV Coc-SA in a distinct context for 2 h, 2×/day over 5 days. Extinction training (EXT) occurred in a second context for 2 h, 2×/day over 4 days. To retrieve cocaine-context memories, rats were exposed to the cocaine-paired context for 15 min, followed by subcutaneous injection of vehicle or the protein synthesis inhibitor cycloheximide (2.5 mg/kg). Two additional EXT sessions were conducted before a 2 h reinstatement test in the cocaine-paired context to assess cocaine-seeking behavior. We find that both adult and adolescent cocaine-exposed rats show similar levels of cocaine-seeking behavior regardless of post-reactivation treatment. Our results suggest that systemic treatment with the protein synthesis inhibitor cycloheximide does not impair reconsolidation of cocaine-context memories and subsequent relapse during adulthood or adolescence.


Assuntos
Cateterismo Venoso Central , Cocaína , Animais , Ratos , Cicloeximida , Inibidores da Síntese de Proteínas , Administração Cutânea , Cocaína/farmacologia
10.
mSphere ; 8(4): e0025423, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37358297

RESUMO

Candida glabrata is a prominent opportunistic fungal pathogen of humans. The increasing incidence of C. glabrata infections is attributed to both innate and acquired resistance to antifungals. Previous studies suggest the transcription factor Pdr1 and several target genes encoding ABC transporters are critical elements of pleiotropic defense against azoles and other antifungals. This study utilizes Hermes transposon insertion profiling to investigate Pdr1-independent and Pdr1-dependent mechanisms that alter susceptibility to the frontline antifungal fluconazole. Several new genes were found to alter fluconazole susceptibility independent of Pdr1 (CYB5, SSK1, SSK2, HOG1, TRP1). A bZIP transcription repressor of mitochondrial function (CIN5) positively regulated Pdr1 while hundreds of genes encoding mitochondrial proteins were confirmed as negative regulators of Pdr1. The antibiotic oligomycin activated Pdr1 and antagonized fluconazole efficacy likely by interfering with mitochondrial processes in C. glabrata. Unexpectedly, disruption of many 60S ribosomal proteins also activated Pdr1, thus mimicking the effects of the mRNA translation inhibitors. Cycloheximide failed to fully activate Pdr1 in a cycloheximide-resistant Rpl28-Q38E mutant. Similarly, fluconazole failed to fully activate Pdr1 in a strain expressing a low-affinity variant of Erg11. Fluconazole activated Pdr1 with very slow kinetics that correlated with the delayed onset of cellular stress. These findings are inconsistent with the idea that Pdr1 directly senses xenobiotics and support an alternative hypothesis where Pdr1 senses cellular stresses that arise only after engagement of xenobiotics with their targets. IMPORTANCE Candida glabrata is an opportunistic pathogenic yeast that causes discomfort and death. Its incidence has been increasing because of natural defenses to our common antifungal medications. This study explores the entire genome for impacts on resistance to fluconazole. We find several new and unexpected genes can impact susceptibility to fluconazole. Several antibiotics can also alter the efficacy of fluconazole. Most importantly, we find that Pdr1-a key determinant of fluconazole resistance-is not regulated directly through binding of fluconazole and instead is regulated indirectly by sensing the cellular stresses caused by fluconazole blockage of sterol biosynthesis. This new understanding of drug resistance mechanisms could improve the outcomes of current antifungals and accelerate the development of novel therapeutics.


Assuntos
Antifúngicos , Fluconazol , Humanos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Candida glabrata/genética , Cicloeximida/metabolismo , Cicloeximida/farmacologia , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xenobióticos/metabolismo , Xenobióticos/farmacologia
11.
Sci Rep ; 13(1): 7628, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165015

RESUMO

DNA recombination techniques in mammalian cells has been applied to the production of therapeutic proteins for several decades. To be used for commercial production, established cell lines should stably express target proteins with high productivity and acceptable quality for human use. In the conventional transfection method, the screening process is laborious and time-consuming since superior cell lines had to be selected from an enormous number of transfected cell pools and clonal cell lines with a wide variety of transgene insertion locations. In this study, we demonstrated that the combination of a Tol2 transposon system and cell selection by cycloheximide resistance is an efficient method to express therapeutic proteins, such as human antibody in suspension culture of Chinese hamster ovary cells. The resulting stable cell lines showed constant productivity and cell growth over a long enough cultivation periods for recombinant protein production. We anticipate that this approach will prove widely applicable to protein production in research and development of pharmaceutical products.


Assuntos
Cricetulus , Cricetinae , Animais , Humanos , Células CHO , Cicloeximida/farmacologia , Proteínas Recombinantes/genética , Células Clonais , Transfecção
12.
Invest New Drugs ; 41(4): 541-550, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37233863

RESUMO

TP53 (p53) and MYC are amongst the most frequently altered genes in cancer. Both are thus attractive targets for new anticancer therapies. Historically, however, both genes have proved challenging to target and currently there is no approved therapy against either. The aim of this study was to investigate the effect of the mutant p53 reactivating drug, COTI-2 on MYC. Total MYC, pSer62 MYC and pThr58 MYC were detected using Western blotting. Proteasome-mediated degradation was determined using the proteasome, inhibitor MG-132, while MYC half-life was measured using pulse chase experiments in the presence of cycloheximide. Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Treatment of 5 mutant p53 breast cancer cell lines with COTI-2 resulted in dose-dependent MYC degradation. Addition of the proteasome inhibitor, MG132, rescued the degradation, suggesting that this proteolytic system was at least partly responsible for the inactivation of MYC. Using cycloheximide in pulse chase experiments, COTI-2 was found to reduce the half-life of MYC in 2 different mutant p53 breast cancer cell lines, i.e., from 34.8 to 18.6 min in MDA-MB-232 cells and from 29.6 to 20.3 min in MDA-MB-468 cells. Co-treatment with COTI-2 and the MYC inhibitor, MYCi975 resulted in synergistic growth inhibition in all 4 mutant p53 cell lines investigated. The dual ability of COTI-2 to reactivate mutant p53 and degrade MYC should enable this compound to have broad application as an anticancer drug.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Cicloeximida/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Int J Nanomedicine ; 18: 2345-2358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187996

RESUMO

Purpose: Madecassic acid (MCA) is a natural triterpenoid isolated from centellae herba that has diverse biological effects, such as anti-inflammatory, antioxidant, and anticancer activities. However, the efficacy of MCA is limited by low oral bioavailability caused by its extremely poor aqueous solubility. This study aimed to develop a self-nanoemulsifying drug delivery system (SNEDDS) for MCA to improve its oral absorption. Methods: The utilized oil phases, surfactants, and co-surfactants for SNEDDS were selected based on the solubility of MCA and emulsification efficiency. The optimized formulation was characterized for pharmaceutical properties and its pharmacokinetic behavior was examined in rats. Besides, the intestinal absorption property of MCA was investigated using in situ single-pass intestinal perfusion and intestinal lymphatic transport. Results: The optimized nanoemulsion formula consists of Capryol 90:Labrasol:Kolliphor ELP:Transcutol HP in a weight ratio of 1:2.7:2.7:3.6 (w/w/w/w). MCA-loaded SNEDDS presented a small droplet size (21.52 ± 0.23 nm), with a zeta potential value of -3.05 ± 0.3 mV. Compared with pure MCA, SNEDDS had a higher effective permeability coefficient and showed 8.47-fold and 4.01-fold of maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC), respectively. Cycloheximide was pretreated before the experiment to evaluate the degree of lymphatic uptake. The results showed that cycloheximide greatly influenced the absorption of SNEDDS, resulting in 82.26% and 76.98% reduction in Cmax and AUC, respectively. Conclusion: This study reports the MCA-loaded SNEDDS with distinctly enhanced in vitro and in vivo performance compared with pure MCA and concludes that the SNEDDS formulation could be a viable and effective strategy for improving the dissolution rate and bioavailability of poor aqueous-soluble ingredients.


Assuntos
Nanopartículas , Triterpenos , Ratos , Animais , Disponibilidade Biológica , Cicloeximida , Administração Oral , Sistemas de Liberação de Medicamentos , Solubilidade , Tensoativos , Emulsões , Tamanho da Partícula
14.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108141

RESUMO

The Saccharomyces cerevisiae Agp2 is a plasma membrane protein initially reported to be an uptake transporter for L-carnitine. Agp2 was later rediscovered, together with three additional proteins, Sky1, Ptk2, and Brp1, to be involved in the uptake of the polyamine analogue bleomycin-A5, an anticancer drug. Mutants lacking either Agp2, Sky1, Ptk2, or Brp1 are extremely resistant to polyamines and bleomycin-A5, suggesting that these four proteins act in the same transport pathway. We previously demonstrated that pretreating cells with the protein synthesis inhibitor cycloheximide (CHX) blocked the uptake of fluorescently labelled bleomycin (F-BLM), raising the possibility that CHX could either compete for F-BLM uptake or alter the transport function of Agp2. Herein, we showed that the agp2Δ mutant displayed striking resistance to CHX as compared to the parent, suggesting that Agp2 is required to mediate the physiological effect of CHX. We examined the fate of Agp2 as a GFP tag protein in response to CHX and observed that the drug triggered the disappearance of Agp2 in a concentration- and time-dependent manner. Immunoprecipitation analysis revealed that Agp2-GFP exists in higher molecular weight forms that were ubiquitinylated, which rapidly disappeared within 10 min of treatment with CHX. CHX did not trigger any significant loss of Agp2-GFP in the absence of the Brp1 protein; however, the role of Brp1 in this process remains elusive. We propose that Agp2 is degraded upon sensing CHX to downregulate further uptake of the drug and discuss the potential function of Brp1 in the degradation process.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Cicloeximida/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Bleomicina/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo
15.
Mol Pharm ; 20(4): 2276-2287, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36946991

RESUMO

To deal with the broad spectrum of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that threaten human health, it is essential to not only drugs develop that target viral proteins but also consider drugs that target host proteins/cellular processes to protect them from being hijacked for viral infection and replication. To this end, it has been reported that autophagy is deeply involved in coronavirus infection. In this study, we used airway organoids to screen a chemical library of autophagic modulators to identify compounds that could potentially be used to fight against infections by a broad range of coronaviruses. Among the 80 autophagy-related compounds tested, cycloheximide and thapsigargin reduced SARS-CoV-2 infection efficiency in a dose-dependent manner. Cycloheximide treatment reduced the infection efficiency of not only six SARS-CoV-2 variants but also human coronavirus (HCoV)-229E and HCoV-OC43. Cycloheximide treatment also reversed viral infection-induced innate immune responses. However, even low-dose (1 µM) cycloheximide treatment altered the expression profile of ribosomal RNAs; thus, side effects such as inhibition of protein synthesis in host cells must be considered. These results suggest that cycloheximide has broad-spectrum anti-coronavirus activity in vitro and warrants further investigation.


Assuntos
COVID-19 , Coronavirus Humano 229E , Humanos , SARS-CoV-2 , Cicloeximida/farmacologia , Autofagia
16.
Sci Rep ; 13(1): 4281, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922538

RESUMO

Mycophenolate Mofetil (MMF) has an established role as a therapeutic agent in childhood nephrotic syndrome. While other immunosuppressants have been shown to positively affect podocytes, direct effects of MMF on podocytes remain largely unknown. The present study examines the effects of MMF's active component Mycophenolic Acid (MPA) on the transcriptome of podocytes and investigates its biological significance. We performed transcriptomics in cultured murine podocytes exposed to MPA to generate hypotheses on podocyte-specific effects of MPA. Accordingly, we further analyzed biological MPA effects on actin cytoskeleton morphology after treatment with bovine serum albumin (BSA) by immunofluorescence staining, as well as on cell survival following exposure to TNF-α and cycloheximide by neutral red assay. MPA treatment significantly (adjusted p < 0.05) affected expression of 351 genes in podocytes. Gene Ontology term enrichment analysis particularly clustered terms related to actin and inflammation-related cell death. Indeed, quantification of the actin cytoskeleton of BSA treated podocytes revealed a significant increase of thickness and number of actin filaments after treatment with MPA. Further, MPA significantly reduced TNFα and cycloheximide induced cell death. MPA has a substantial effect on the transcriptome of podocytes in vitro, particularly including functional clusters related to non-immune cell dependent mechanisms. This may provide a molecular basis for direct beneficial effects of MPA on the structural integrity and survival of podocytes under pro-inflammatory conditions.


Assuntos
Ácido Micofenólico , Podócitos , Animais , Camundongos , Citoesqueleto de Actina/metabolismo , Sobrevivência Celular , Cicloeximida , Ácido Micofenólico/farmacologia , Podócitos/metabolismo
17.
J Nat Prod ; 86(2): 340-345, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693198

RESUMO

Chemical redundancy of microbial natural products (NPs) underscores the importance to exploit new resources of microorganisms. Insect-associated microbes are prolific but largely underexplored sources of diverse NPs. Herein, we discovered the new compound α-l-rhamnosyl-actiphenol (1) from a millipede-associated Streptomyces sp. ML6, which is the first glycosylated cycloheximide-class natural product. Interestingly, bioinformatics analysis of the ML6 genome revealed that the biosynthesis of 1 involves a cooperation between two gene clusters (chx and rml) located distantly on the genome of ML6. We also carried out in vitro enzymatic glycosylation of cycloheximide using an exotic promiscuous glycosyltransferase BsGT-1, which resulted in the production of an additional cycloheximide glycoside cycloheximide 7-O-ß-d-glucoside (5). Although the antifungal and cytotoxic activities of the new compounds 1 and 5 were attenuated relative to those of cycloheximide, our work not only enriches the chemical repertoire of the cycloheximide family but also provides new insights into the structure-activity relationship optimization and ecological roles of cycloheximide.


Assuntos
Actinobacteria , Glicosilação , Cicloeximida , Actinobacteria/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Glicosídeos
18.
Am J Hum Genet ; 110(2): 251-272, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36669495

RESUMO

For neurodevelopmental disorders (NDDs), a molecular diagnosis is key for management, predicting outcome, and counseling. Often, routine DNA-based tests fail to establish a genetic diagnosis in NDDs. Transcriptome analysis (RNA sequencing [RNA-seq]) promises to improve the diagnostic yield but has not been applied to NDDs in routine diagnostics. Here, we explored the diagnostic potential of RNA-seq in 96 individuals including 67 undiagnosed subjects with NDDs. We performed RNA-seq on single individuals' cultured skin fibroblasts, with and without cycloheximide treatment, and used modified OUTRIDER Z scores to detect gene expression outliers and mis-splicing by exonic and intronic outliers. Analysis was performed by a user-friendly web application, and candidate pathogenic transcriptional events were confirmed by secondary assays. We identified intragenic deletions, monoallelic expression, and pseudoexonic insertions but also synonymous and non-synonymous variants with deleterious effects on transcription, increasing the diagnostic yield for NDDs by 13%. We found that cycloheximide treatment and exonic/intronic Z score analysis increased detection and resolution of aberrant splicing. Importantly, in one individual mis-splicing was found in a candidate gene nearly matching the individual's specific phenotype. However, pathogenic splicing occurred in another neuronal-expressed gene and provided a molecular diagnosis, stressing the need to customize RNA-seq. Lastly, our web browser application allowed custom analysis settings that facilitate diagnostic application and ranked pathogenic transcripts as top candidates. Our results demonstrate that RNA-seq is a complementary method in the genomic diagnosis of NDDs and, by providing accessible analysis with improved sensitivity, our transcriptome analysis approach facilitates wider implementation of RNA-seq in routine genome diagnostics.


Assuntos
Perfilação da Expressão Gênica , Transtornos do Neurodesenvolvimento , Humanos , RNA-Seq , Cicloeximida , Análise de Sequência de RNA/métodos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética
19.
Acta Pharmacol Sin ; 44(2): 345-355, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35945313

RESUMO

Abdominal aortic aneurysm (AAA) is a dangerous vascular disease without any effective drug therapies so far. Emerging evidence suggests the phenotypic differences in perivascular adipose tissue (PVAT) between regions of the aorta are implicated in the development of atherosclerosis evidenced by the abdominal aorta more vulnerable to atherosclerosis than the thoracic aorta in large animals and humans. The prevalence of thoracic aortic aneurysms (TAA) is much less than that of abdominal aortic aneurysms (AAA). In this study we investigated the effect of thoracic PVAT (T-PVAT) transplantation on aortic aneurysm formation and the impact of T-PVAT on vascular smooth muscle cells. Calcium phosphate-induced mouse AAA model was established. T-PVAT (20 mg) was implanted around the abdominal aorta of recipient mice after removal of endogenous abdominal PVAT (A-PVAT) and calcium phosphate treatment. Mice were sacrificed two weeks after the surgery and the maximum external diameter of infrarenal aorta was measured. We found that T-PVAT displayed a more BAT-like phenotype than A-PVAT; transplantation of T-PVAT significantly attenuated calcium phosphate-induced abdominal aortic dilation and elastic degradation as compared to sham control or A-PVAT transplantation. In addition, T-PVAT transplantation largely preserved smooth muscle cell content in the abdominal aortic wall. Co-culture of T-PVAT with vascular smooth muscle cells (VSMCs) significantly inhibited H2O2- or TNFα plus cycloheximide-induced VSMC apoptosis. RNA sequencing analysis showed that T-PVAT was enriched by browning adipocytes and anti-apoptotic secretory proteins. We further verified that the secretome of mature adipocytes isolated from T-PVAT significantly inhibited H2O2- or TNFα plus cycloheximide-induced VSMC apoptosis. Using proteomic and bioinformatic analyses we identified cartilage oligomeric matrix protein (COMP) as a secreted protein significantly increased in T-PVAT. Recombinant COMP protein significantly inhibited VSMC apoptosis. We conclude that T-PVAT exerts anti-apoptosis effect on VSMCs and attenuates AAA formation, which is possibly attributed to the secretome of browning adipocytes.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma Aórtico , Aterosclerose , Humanos , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Peróxido de Hidrogênio/metabolismo , Secretoma , Músculo Liso Vascular/metabolismo , Cicloeximida/metabolismo , Proteômica , Tecido Adiposo/metabolismo , Aneurisma Aórtico/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/metabolismo , Aorta Abdominal/cirurgia , Aterosclerose/metabolismo , Adipócitos Marrons , Camundongos Endogâmicos C57BL
20.
Ann Clin Lab Sci ; 53(6): 861-871, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38182147

RESUMO

OBJECTIVE: Recently, there has been much interest in quinazoline derivatives due to their unique anti-tumor effects. In this study, we aimed to investigate the effects of KZL204, an active trifluoromethylated quinazoline derivative, on a human glioblastoma multiforme (GBM) cell line U251MG. Additionally, we tried to identify the potential target of KZL204 for treating GBM. METHODS: Cell counting kit-8 (CCK-8) assay for cytotoxicity, 5-ethynyl-2-deoxyuridine (EdU) staining for cell proliferation, flow cytometry for cell apoptosis and cell cycle, wound scratch test for cell migration, and transwell assay for cell invasion were carried out on U251MG cells after exposing them to different concentrations of KZL204. In addition, western blot analysis, network pharmacology-based analysis, molecular docking assay, cellular thermal shift assay (CETSA), and cycloheximide chase assay were performed. RESULTS: Our results showed that KZL204 concentration-dependently inhibited U251MG cell proliferation, induced apoptosis, arrested cell cycle in the G2/M phase, and inhibited cell invasion and migration capacity. Further network pharmacology-based analysis revealed that epidermal growth factor receptor (EGFR), FYN, YES1, LYN, ephrin type-A receptor 2 (EPHA2), and EPHA4 are the top 6 core targets for inhibiting cell growth, apoptosis, cell cycle, and metastasis of the GBM cells. Molecular docking and CETSA showed that KZL204 had a strong targeting binding affinity with EPHA2. Cycloheximide chase assay and western blot results demonstrated that KZL204 could down-regulate the protein level of EPHA2. CONCLUSIONS: KZL204 exhibits potent inhibitory activity for glioblastoma multiforme cells, which may be related to its role in promoting the degradation of EPHA2.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Cicloeximida , Simulação de Acoplamento Molecular , Ciclo Celular , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...